Search Results by Classification Category

Results for entries tagged with "Dermatology - Plastic Surgery"

Cellular Particle Exclusion Assay

Cellular matrix production is crucial in the formation, maintenance, and repair of organs and tissues. While there are many dyes and antibodies available to study matrix production in-vitro, such reporters can generally only be applied as an endpoint tool as they require cell fixation and do not support live cell study.

Gene Therapy R&D

Genetic transfection of cell types to elucidate pathways involved in specific pathologies requires ongoing assessment of transfection efficiencly to ensure that modification was successful and subsequent assays performed are valid.

Determining Wear and Sharpness of Razor Blades Using a Scanning Electron Microscope

Analysis of wear and sharpness of cutting tools requires nanometer-level resolution for accurate assessment. Unfortunately there are limited choices of imaging modalities that can achieve such resolution. Scanning electron microscopy (SEM) is a common choice for such an evaluation, especially when the test surface is conductive and does not require metallic (sputter) coating. This was the case for a study in which wear of razor blades was a required output metric.

Colony Analysis

Undifferentiated embryonic stem cells and induced pluripotent stem cells will form aggregates or "colonies" in vitro prior to differentiation. Evaluation of colony shape, area, cell density, rate of growth/proliferation, migration, etc. can be important factors in selection of an appropriate cells for subsequent differentiation and expansion for transplantation or bioassay development.

Fracture Union Analysis

Non-union fractures can heal in an amorphous fashion and are thus difficult to assess qualitatively with regard to bridging success. Leveraging the 3D output of micro-computed tomography (CT) and subsequent image analysis, it is however possible to quantitatively represent bridging or union in a more consistent and logical manner that accounts for the non-uniformity in healing.

Bright Field Immuno-Staining

Non-fluorescent, immuno-staining of histological tissue for specific antigens generally involves enzymatic subtrates that oxidize compounds such as diaminobenzidine (DAB) to precipitate a brown chromogenic product. Unfortunately, "brown" color is composed of a mixture of hues not easily segmented or characterized from background.

Multi-modality Volumetric Registration

Spatial registration of longitudinal volumes and subsequent analysis can enable morphometric tracking of implants to evaluate degradation/biocompatibility or assess response of various pathologies/phenotypes to therapeutics or genetic manipulation.

Osseointegration in Bone Substitutes

To determine efficacy of candidate bone substitutes for non-weight bearing applications such as facial reconstruction, rate and extent of osseointegration or mineralization are key assessment parameters. Unfortunately traditional means of evaluation require multiple animals to be sacrificed at each time point followed by exhaustive histological sectioning, staining, imaging and quantitative analysis for bone in-growth for the duration of the study.

Skull Mapping

To determine if disruption of specific signaling pathways can effect mineralization of cranial bones, volumetric and density measurement is required for each of the bones in the calvaria of genetically modified, embryonic mice. To accomplish this, skulls of E18 mice were scanned using micro-computed tomography (micro-CT).

Cell Proliferation/Lineage Analysis

Cellular division and lineage tracing analysis is an extremely complex problem with respect to image analysis but essential for cell fate assessment and phenotyping following genetic manipulation or drug treatment.

Confocal Time-Lapse Imaging of Actin Ruffles

Mechanics of endothelial cell (EC) migration have been extensively studied to elucidate mechanisms/pathways involved wound healing and neovascularization. It is widely accepted that actin, a major cytoskeletal component, plays a crucial role EC translocation.

Tube Formation Analysis

Endothelial cells (EC), when provided with a 3D extracellular matrix substrate and appropriately supplemented growth media, will self-organize into a network of capillary-like "tubes." This in-vitro, "tube formation" assay, is commonly used to assess ability of compounds to stimulate or inhibit angiogenesis.

Automated Histological Analysis of Osseointegration

The structure and chemical composition of bone scaffolds or implants will impact their ability to promote bone in-growth and consequently dictate stability of the implant. Small animal models are often utilized for evaluation of bone in-growth in candidate scaffolds. Scaffolds are generally implanted into proximal sites of long bones for a fixed period of time.

Adipocyte Characterization

Morphometric analysis of fat cells or adipocytes within specific organs enables quantitative assessment of various pathologies or compounds that affect metabolic pathways. Unfortunately, most labs will perform such analysis with multiple observers manually delineating each adipocyte in a given field-of-view.

TEM Collagen Fibril Morphometry

Transmission electron microscopy (TEM) is a valuable imaging tool for nanometer scale assessment of extracellular matrix organization and localization/morphology of subcellular structures. As an example, collagen fibrils in a genetically modified animal model were imaged using TEM for evaluation of collagen morphology and spacing/packing.